Error Control Coding Based on Support Vector Machine
نویسندگان
چکیده
A novel approach of decoding convolutional codes using a multi-class support vector machine is presented in this paper. Support vector machine is a recently developed and well recognized algorithm for constructing maximum margin classifiers. Unlike traditional adaptive learning approaches such as a multi-layer neural network, it is able to converge to a global optimum solution, hence achieving a better performance. However, up to this date so far, no work has yet been done on applying support vector machine on error control coding. In this investigation, decoding is achieved by treating each codeword as a unique class. Hence the decoding procedure becomes a multi-class pattern classification problem. Simulation results show that the bit error rate performance of decoder based on such approach compare favorably with a conventional soft decision Viterbi Algorithm under a noisy channel with additive white Gaussian noise and achieve an extra 2 dB coding gain over the conventional method in a Rayleigh’s fading channel.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملA Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting
Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل